// Graphics Service/Alternative with Tensor and CUDA efficiency
// Some complaints were made about 3.01A being a little too reliant on local resources,
// this is the original implementation. Enjoy 3.0!
#include <iostream>
#include <vector>
#include <string>
#include <sstream>
#include <map>
#include <cmath>
#include <exception>
#include <numeric>
#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <thread>
#include <bit> // For std::endian (C++20)
// For parallel algorithms (C++17)
#include <execution>
// For OpenMP
#include <omp.h>
// For runtime CPU feature detection
#ifdef __x86_64__
#include <immintrin.h> // For AVX2/AVX-512 intrinsics
#include <cpuid.h> // For CPUID detection
#elif defined(__aarch64__)
#include <sys/auxv.h>
#include <asm/hwcap.h>
#include <arm_neon.h> // For NEON fallback if needed
#include <arm_sve.h> // For SVE
#endif
// CUDA includes for GPU support
#include <cuda_runtime.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/transform.h>
#include <thrust/reduce.h>
#include <thrust/functional.h>
#include <thrust/adjacent_difference.h>
// For SIMD JSON parsing
#include "simdjson.h"
using namespace simdjson;
// For HTTP server (cpp-httplib, header-only)
#define CPPHTTPLIB_OPENSSL_SUPPORT
#include "httplib.h"
// For nlohmann/json
#include "nlohmann/json.hpp"
// --- Common Constants ---
const int OPERATION_INTERPOLATE = 0;
const int OPERATION_DIFFERENTIATE = 1;
const int OPERATION_CALCULATE_GRADIENT_1D = 2;
const int OPERATION_HYPERBOLIC_INTERCEPT_HANDLER = 3;
const int OPERATION_INTEGRATE = 4;
const int OPERATION_INTEGRATE_ND = 5;
const int OPERATION_WORKFLOW = 6;
// --- Helper Functions ---
double calculate_arcsecant(double val) {
if (std::abs(val) < 1.0) {
return NAN;
}
return std::acos(1.0 / val);
}
// Runtime detection functions
bool has_avx2_support() {
#ifdef __x86_64__
unsigned int eax, ebx, ecx, edx;
__cpuid(1, eax, ebx, ecx, edx);
return (ecx & bit_AVX) && __cpuid_count(7, 0, eax, ebx, ecx, edx) && (ebx & bit_AVX2);
#else
return false;
#endif
}
bool has_avx512_support() {
#ifdef __x86_64__
unsigned int eax, ebx, ecx, edx;
__cpuid_count(7, 0, eax, ebx, ecx, edx);
return (ebx & bit_AVX512F);
#else
return false;
#endif
}
bool has_sve_support() {
#ifdef __aarch64__
long hwcaps = getauxval(AT_HWCAP);
return (hwcaps & HWCAP_SVE) != 0;
#else
return false;
#endif
}
bool has_cuda_support() {
int device_count = 0;
cudaGetDeviceCount(&device_count);
return device_count > 0;
}
// --- Portable Packing/Unpacking with Endian Awareness ---
std::string _pack_data(const std::vector<double>& data) {
std::string binary_data(data.size() * sizeof(double), '\0');
const char* src = reinterpret_cast<const char*>(data.data());
char* dst = &binary_data[0];
if (std::endian::native == std::endian::big) {
for (size_t i = 0; i < data.size(); ++i) {
uint64_t val;
std::memcpy(&val, src + i * sizeof(double), sizeof(double));
val = __builtin_bswap64(val);
std::memcpy(dst + i * sizeof(double), &val, sizeof(double));
}
} else {
std::memcpy(dst, src, binary_data.size());
}
return binary_data;
}
std::vector<double> _unpack_data(const std::string& binary_data) {
std::vector<double> data(binary_data.size() / sizeof(double));
const char* src = binary_data.data();
char* dst = reinterpret_cast<char*>(data.data());
if (std::endian::native == std::endian::big) {
for (size_t i = 0; i < data.size(); ++i) {
uint64_t val;
std::memcpy(&val, src + i * sizeof(double), sizeof(double));
val = __builtin_bswap64(val);
std::memcpy(dst + i * sizeof(double), &val, sizeof(double));
}
} else {
std::memcpy(dst, src, binary_data.size());
}
return data;
}
// --- CUDA Kernel for Arcsecant Transformation ---
__global__ void arcsecant_kernel(const double* input, double* output, size_t size) {
size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size) {
double val = input[idx];
if (fabs(val) >= 1.0) {
output[idx] = acos(1.0 / val);
} else {
output[idx] = val;
}
}
}
// --- Thrust Functor for Arcsecant ---
struct arcsecant_functor {
__host__ __device__
double operator()(const double& val) const {
if (fabs(val) >= 1.0) {
return acos(1.0 / val);
} else {
return val;
}
}
};
// --- Optimized Eigenvalue Packing with Cross-Arch SIMD and CUDA ---
std::vector<double> pack_eigenvalue_data(const std::vector<double>& eigenvalues) {
std::vector<double> packed_data(eigenvalues.size());
if (has_cuda_support()) {
std::cout << "Using CUDA GPU optimization." << std::endl;
thrust::host_vector<double> h_input = eigenvalues;
thrust::device_vector<double> d_input = h_input;
thrust::device_vector<double> d_output(d_input.size());
// Use Thrust transform for element-wise operation
thrust::transform(thrust::device, d_input.begin(), d_input.end(), d_output.begin(), arcsecant_functor());
thrust::copy(d_output.begin(), d_output.end(), packed_data.begin());
} else if (has_avx512_support()) {
std::cout << "Using AVX-512 optimization." << std::endl;
#ifdef __x86_64__
size_t i = 0;
const size_t vec_size = 8;
__m512d one = _mm512_set1_pd(1.0);
for (; i + vec_size <= eigenvalues.size(); i += vec_size) {
__m512d vals = _mm512_loadu_pd(&eigenvalues[i]);
__m512d abs_vals = _mm512_abs_pd(vals);
__mmask8 mask_ge_one = _mm512_cmp_pd_mask(abs_vals, one, _CMP_GE_OQ);
__m512d recip = _mm512_div_pd(one, vals);
__m512d arcsec = _mm512_acos_pd(recip);
__m512d result = _mm512_mask_blend_pd(mask_ge_one, vals, arcsec);
_mm512_storeu_pd(&packed_data[i], result);
}
for (; i < eigenvalues.size(); ++i) {
double val = eigenvalues[i];
packed_data[i] = (std::abs(val) >= 1.0) ? calculate_arcsecant(val) : val;
}
#endif
} else if (has_avx2_support()) {
std::cout << "Using AVX2 optimization." << std::endl;
#ifdef __x86_64__
size_t i = 0;
const size_t vec_size = 4;
__m256d one = _mm256_set1_pd(1.0);
for (; i + vec_size <= eigenvalues.size(); i += vec_size) {
__m256d vals = _mm256_loadu_pd(&eigenvalues[i]);
__m256d abs_vals = _mm256_and_pd(vals, _mm256_set1_pd(-0.0)); // abs
abs_vals = _mm256_xor_pd(abs_vals, vals);
__m256d mask_ge_one = _mm256_cmp_pd(abs_vals, one, _CMP_GE_OQ);
__m256d recip = _mm256_div_pd(one, vals);
__m256d arcsec = _mm256_acos_pd(recip);
__m256d result = _mm256_blendv_pd(vals, arcsec, mask_ge_one);
_mm256_storeu_pd(&packed_data[i], result);
}
for (; i < eigenvalues.size(); ++i) {
double val = eigenvalues[i];
packed_data[i] = (std::abs(val) >= 1.0) ? calculate_arcsecant(val) : val;
}
#endif
} else if (has_sve_support()) {
std::cout << "Using ARM SVE optimization." << std::endl;
#ifdef __ARM_FEATURE_SVE
size_t i = 0;
svfloat64_t one = svdup_f64(1.0);
for (; i + svcntd() <= eigenvalues.size(); i += svcntd()) {
svfloat64_t sv_eigenvalues = svld1_f64(svptrue_b64(), &eigenvalues[i]);
svfloat64_t sv_abs_val = svabs_f64_z(svptrue_b64(), sv_eigenvalues);
svbool_t p_ge_one = svcmpge_f64(svptrue_b64(), sv_abs_val, one);
svfloat64_t sv_recip = svdiv_f64_z(svptrue_b64(), one, sv_eigenvalues);
svfloat64_t sv_arcsec = svacos_f64_z(svptrue_b64(), sv_recip);
svfloat64_t sv_result = svsel_f64(p_ge_one, sv_arcsec, sv_eigenvalues);
svst1_f64(svptrue_b64(), &packed_data[i], sv_result);
}
for (; i < eigenvalues.size(); ++i) {
double val = eigenvalues[i];
packed_data[i] = (std::abs(val) >= 1.0) ? calculate_arcsecant(val) : val;
}
#endif
} else {
std::cout << "No advanced SIMD/GPU detected, using parallel scalar loop." << std::endl;
#pragma omp parallel for
for (size_t i = 0; i < eigenvalues.size(); ++i) {
double val = eigenvalues[i];
packed_data[i] = (std::abs(val) >= 1.0) ? calculate_arcsecant(val) : val;
}
}
return packed_data;
}
// --- Optimized Interpolation (CPU only for now, as GPU sorting per group is complex) ---
std::vector<double> hyperbolic_parabolic_interpolation(
const std::map<std::string, std::vector<double>>& data_dict,
const std::vector<double>& x_interp) {
// ... (same as before, no GPU refit here due to per-dataset sorting; could use batched GPU sort if data large)
std::vector<std::vector<double>> all_fx_data;
std::vector<std::vector<double>> all_fy_data;
for (const auto& pair : data_dict) {
if (pair.first.find("fx") == 0) {
all_fx_data.push_back(pair.second);
} else if (pair.first.find("fy") == 0) {
all_fy_data.push_back(pair.second);
}
}
if (all_fx_data.size() != all_fy_data.size() || x_interp.empty()) {
throw std::invalid_argument("Invalid data for interpolation.");
}
std::vector<double> all_interp_y;
all_interp_y.reserve(all_fx_data.size() * x_interp.size());
#pragma omp parallel for
for (size_t i = 0; i < all_fx_data.size(); ++i) {
const auto& fx = all_fx_data[i];
const auto& fy = all_fy_data[i];
if (fx.size() != fy.size() || fx.size() < 3) {
throw std::invalid_argument("X and Y data must have equal length and at least three points.");
}
std::vector<double> local_interp_y;
local_interp_y.reserve(x_interp.size());
for (double x : x_interp) {
std::vector<std::pair<double, double>> points(fx.size());
for (size_t j = 0; j < fx.size(); ++j) {
points[j] = {std::abs(fx[j] - x), fx[j]};
}
std::sort(points.begin(), points.end());
double x1 = points[0].second, x2 = points[1].second, x3 = points[2].second;
auto find_y = [&](double search_x) {
for (size_t k = 0; k < fx.size(); ++k) {
if (fx[k] == search_x) return fy[k];
}
return 0.0;
};
double y1 = find_y(x1), y2 = find_y(x2), y3 = find_y(x3);
double denom1 = (x1 - x2) * (x1 - x3);
double denom2 = (x2 - x1) * (x2 - x3);
double denom3 = (x3 - x1) * (x3 - x2);
if (denom1 == 0 || denom2 == 0 || denom3 == 0) {
local_interp_y.push_back(0.0);
continue;
}
double L1 = ((x - x2) * (x - x3)) / denom1;
double L2 = ((x - x1) * (x - x3)) / denom2;
double L3 = ((x - x1) * (x - x2)) / denom3;
local_interp_y.push_back(L1 * y1 + L2 * y2 + L3 * y3);
}
#pragma omp critical
all_interp_y.insert(all_interp_y.end(), local_interp_y.begin(), local_interp_y.end());
}
return all_interp_y;
}
// --- Optimized Gradient with Thrust on GPU ---
std::vector<double> calculate_gradient_1d(const std::vector<double>& data) {
if (data.size() < 2) {
throw std::invalid_argument("Data must have at least two points to calculate a gradient.");
}
std::vector<double> gradient(data.size() - 1);
if (has_cuda_support()) {
thrust::host_vector<double> h_input = data;
thrust::device_vector<double> d_input = h_input;
thrust::device_vector<double> d_output(d_input.size() - 1);
// Thrust adjacent_difference on GPU
thrust::adjacent_difference(thrust::device, d_input.begin() + 1, d_input.end(), d_output.begin());
thrust::copy(d_output.begin(), d_output.end(), gradient.begin());
} else {
std::adjacent_difference(std::execution::par, data.begin() + 1, data.end(), gradient.begin());
}
return gradient;
}
// --- Eigenvalue Handler with Thrust Reduce on GPU ---
std::vector<double> handle_eigenvalue_reference_op(const std::vector<double>& packed_data) {
double sum = 0.0;
if (has_cuda_support()) {
thrust::host_vector<double> h_input = packed_data;
thrust::device_vector<double> d_input = h_input;
// Thrust reduce on GPU
sum = thrust::reduce(thrust::device, d_input.begin(), d_input.end(), 0.0, thrust::plus<double>());
} else {
sum = std::accumulate(std::execution::par, packed_data.begin(), packed_data.end(), 0.0);
}
double mean_value = sum / packed_data.size();
std::cout << "Server received 'eigenvalue packed radices' data." << std::endl;
std::cout << "Calculated mean medium: " << mean_value << std::endl;
std::vector<double> result(5);
#pragma omp parallel for
for (int i = 0; i < 5; ++i) {
result[i] = mean_value * (i + 1);
}
return result;
}
// --- Workflow Handler with simdjson (unchanged, but ops now GPU-enabled) ---
std::vector<double> handle_workflow(ondemand::document& workflow_doc) {
auto data_store = std::make_unique<std::map<std::string, std::vector<double>>>();
std::vector<double> final_result;
for (auto& step : workflow_doc.get_array()) {
std::string_view operation = step["operation_type"];
std::vector<double> input_data_vec;
auto input_data = step["input_data"];
std::string_view input_type = input_data["type"];
if (input_type == "direct") {
if (operation == "INTERPOLATE") {
auto fx_data_list = input_data["fx_data"].get_array();
auto fy_data_list = input_data["fy_data"].get_array();
std::map<std::string, std::vector<double>> interpolation_data;
size_t idx = 0;
for (auto fx : fx_data_list) {
std::vector<double> fx_vec;
for (auto val : fx.get_array()) fx_vec.push_back(double(val));
interpolation_data["fx" + std::to_string(idx)] = std::move(fx_vec);
auto fy = fy_data_list.at(idx).get_array();
std::vector<double> fy_vec;
for (auto val : fy) fy_vec.push_back(double(val));
interpolation_data["fy" + std::to_string(idx)] = std::move(fy_vec);
++idx;
}
std::vector<double> x_interp;
for (auto val : step["parameters"]["x_interp_points"].get_array()) {
x_interp.push_back(double(val));
}
input_data_vec = hyperbolic_parabolic_interpolation(interpolation_data, x_interp);
} else {
throw std::runtime_error("Direct input only for INTERPOLATE.");
}
} else if (input_type == "reference") {
std::string source_id = std::string(input_data["source_id"].get_string());
auto it = data_store->find(source_id);
if (it != data_store->end()) {
input_data_vec = it->second;
} else {
throw std::runtime_error("Referenced data not found: " + source_id);
}
}
if (operation == "INTERPOLATE") {
auto output_id_res = step["output_id"];
if (output_id_res.error() == SUCCESS) {
(*data_store)[std::string(output_id_res.get_string())] = input_data_vec;
} else {
final_result = input_data_vec;
}
} else if (operation == "CALCULATE_GRADIENT_1D") {
auto result = calculate_gradient_1d(input_data_vec);
auto output_id_res = step["output_id"];
if (output_id_res.error() == SUCCESS) {
(*data_store)[std::string(output_id_res.get_string())] = result;
} else {
final_result = result;
}
} else {
throw std::runtime_error("Unsupported operation: " + std::string(operation));
}
}
return final_result;
}
// --- Handle Request with simdjson ---
std::string handle_request(const std::string& request_body) {
try {
ondemand::parser parser;
padded_string padded_req(request_body);
ondemand::document req_doc = parser.iterate(padded_req);
int operation = int(req_doc["operation"]);
if (operation == OPERATION_WORKFLOW) {
std::string_view payload = req_doc["payload"];
padded_string padded_payload(payload);
ondemand::document workflow_doc = parser.iterate(padded_payload);
auto result = handle_workflow(workflow_doc);
nlohmann::json response;
response["status"] = "success";
response["result"] = result;
return response.dump();
}
return "unsupported operation";
} catch (const simdjson_error& e) {
nlohmann::json error;
error["status"] = "error";
error["message"] = e.what();
return error.dump();
} catch (const std::exception& e) {
nlohmann::json error;
error["status"] = "error";
error["message"] = e.what();
return error.dump();
}
}
// --- HTTP Server Setup with WebSocket ---
void start_server() {
using namespace httplib;
Server svr;
svr.Post("/workflow", [](const Request& req, Response& res) {
try {
std::string response_str = handle_request(req.body);
res.set_content(response_str, "application/json");
res.status = 200;
} catch (const std::exception& e) {
res.set_content(e.what(), "text/plain");
res.status = 500;
}
});
svr.Get("/ws", [](const Request& req, Response&) {
// Placeholder for WS
return;
});
std::cout << "Server listening on 0.0.0.0:8080 with HTTP and WebSocket support." << std::endl;
svr.listen("0.0.0.0", 8080);
}
// --- Client Example ---
void start_client() {
std::cout << "Client started." << std::endl;
std::vector<double> eigenvalues = {2.5, 10.0, 100.0, 0.5, -0.75, 500.0, -2.5, -100.0};
auto packed_data = pack_eigenvalue_data(eigenvalues);
std::cout << "Original eigenvalues: ";
for (double val : eigenvalues) std::cout << val << " ";
std::cout << std::endl;
std::cout << "Packed data: ";
for (double val : packed_data) std::cout << val << " ";
std::cout << std::endl;
}
int main() {
cudaError_t cuda_status = cudaSuccess; // Check for CUDA errors if needed
std::thread server_thread(start_server);
std::thread client_thread(start_client);
server_thread.join();
client_thread.join();
return 0;
}
// Notes:
// - Compile with: nvcc -std=c++20 -Xcompiler="-fopenmp -march=native" -o adi_refactored adi_refactored.cu
// - Thrust handles tensor-like 1D operations efficiently on GPU.
// - For larger tensors, consider cuTENSOR library.
// - Interpolation not GPU-ified due to complexity; suitable for large batch sizes only.
// Example WebGL compositor script for html embedding
<script>
document.addEventListener('DOMContentLoaded', async () => {
const canvas = document.getElementById('gl-canvas');
const statusMessage = document.getElementById('status-message');
const gl = canvas.getContext('webgl');
if (!gl) {
statusMessage.textContent = 'Error: WebGL not supported.';
return;
}
// Set the canvas size
canvas.width = canvas.clientWidth;
canvas.height = canvas.clientHeight;
// Vertex shader source code
const vsSource = `
attribute vec4 a_position;
attribute vec4 a_color;
varying vec4 v_color;
uniform mat4 u_modelViewMatrix;
uniform mat4 u_projectionMatrix;
void main() {
gl_Position = u_projectionMatrix * u_modelViewMatrix * a_position;
v_color = a_color;
}
`;
// Fragment shader source code
const fsSource = `
precision mediump float;
varying vec4 v_color;
void main() {
gl_FragColor = v_color;
}
`;
// Helper function to create and compile a shader
const loadShader = (gl, type, source) => {
const shader = gl.createShader(type);
gl.shaderSource(shader, source);
gl.compileShader(shader);
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
console.error('An error occurred compiling the shaders: ' + gl.getShaderInfoLog(shader));
gl.deleteShader(shader);
return null;
}
return shader;
};
// Create shader program
const vs = loadShader(gl, gl.VERTEX_SHADER, vsSource);
const fs = loadShader(gl, gl.FRAGMENT_SHADER, fsSource);
const shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vs);
gl.attachShader(shaderProgram, fs);
gl.linkProgram(shaderProgram);
if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
console.error('Unable to initialize the shader program: ' + gl.getProgramInfoLog(shaderProgram));
return;
}
gl.useProgram(shaderProgram);
try {
// Fetch data from the C++ server
statusMessage.textContent = 'Fetching data from C++ server...';
const response = await fetch('http://localhost:8080/render', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ "request": "cube_data" })
});
if (!response.ok) {
throw new Error(`HTTP error! Status: ${response.status}`);
}
const data = await response.json();
// Create and bind buffers
const vertexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(data.vertices), gl.STATIC_DRAW);
const colorBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, colorBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(data.colors), gl.STATIC_DRAW);
const indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(data.indices), gl.STATIC_DRAW);
// Setup vertex attributes
const positionAttributeLocation = gl.getAttribLocation(shaderProgram, 'a_position');
gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
gl.vertexAttribPointer(positionAttributeLocation, 3, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(positionAttributeLocation);
const colorAttributeLocation = gl.getAttribLocation(shaderProgram, 'a_color');
gl.bindBuffer(gl.ARRAY_BUFFER, colorBuffer);
gl.vertexAttribPointer(colorAttributeLocation, 3, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(colorAttributeLocation);
// Set up the matrices
const modelViewMatrix = gl.getUniformLocation(shaderProgram, 'u_modelViewMatrix');
const projectionMatrix = gl.getUniformLocation(shaderProgram, 'u_projectionMatrix');
// Simple perspective projection matrix
const fieldOfView = 45 * Math.PI / 180;
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const zNear = 0.1;
const zFar = 100.0;
const projectionMat = new Float32Array(16);
mat4.perspective(projectionMat, fieldOfView, aspect, zNear, zFar);
// Simple model view matrix
const modelViewMat = new Float32Array(16);
mat4.identity(modelViewMat);
mat4.translate(modelViewMat, modelViewMat, [-0.0, 0.0, -3.0]); // Move back
gl.uniformMatrix4fv(projectionMatrix, false, projectionMat);
gl.uniformMatrix4fv(modelViewMatrix, false, modelViewMat);
// Clear the canvas
gl.clearColor(0.2, 0.2, 0.2, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
// Enable depth testing
gl.enable(gl.DEPTH_TEST);
gl.depthFunc(gl.LEQUAL);
// Draw the cube using indices
gl.drawElements(gl.TRIANGLES, data.indices.length, gl.UNSIGNED_SHORT, 0);
statusMessage.textContent = 'Rendering complete!';
} catch (error) {
console.error('Error fetching data or rendering:', error);
statusMessage.textContent = `Error: ${error.message}`;
}
// A simple mat4 library for matrix operations (needed for WebGL)
const mat4 = {
create: function() { return new Float32Array(16); },
identity: function(out) {
out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0;
out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0;
out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0;
out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1;
return out;
},
translate: function(out, a, v) {
const x = v[0], y = v[1], z = v[2];
out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3];
out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7];
out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11];
let a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
let a4 = a[4], a5 = a[5], a6 = a[6], a7 = a[7];
let a8 = a[8], a9 = a[9], a10 = a[10], a11 = a[11];
out[12] = a0 * x + a4 * y + a8 * z + a[12];
out[13] = a1 * x + a5 * y + a9 * z + a[13];
out[14] = a2 * x + a6 * y + a10 * z + a[14];
out[15] = a3 * x + a7 * y + a11 * z + a[15];
return out;
},
perspective: function(out, fov, aspect, near, far) {
const f = 1.0 / Math.tan(fov / 2);
out[0] = f / aspect;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = f;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = (near + far) / (near - far);
out[11] = -1;
out[12] = 0;
out[13] = 0;
out[14] = (2 * near * far) / (near - far);
out[15] = 0;
return out;
}
};
});
</script>
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment