Friday, August 22, 2025

Adi Protocol Internet 3.0 - GPU-free code

// Enjoy the original code without GPU requirements.

// It combines CPU-based optimizations with OpenMP for acceleration.
// Thanks to xAI for scrobbling some information which could be useful in a Internet 3.0 position.
// Adi Protocol Internet 3.0 on ARMv7-A/9 & Intel & AMD

#include <iostream>
#include <vector>
#include <string>
#include <map>
#include <memory>
#include <cmath>
#include <numeric>
#include <algorithm>
#include <stdexcept>
#include <thread>
#include <mutex>
#include <execution> // For parallel algorithms
#include <omp.h>     // For OpenMP
#include <bit>       // For std::endian (C++20)
#include <cstring>   // For std::memcpy

// For runtime CPU feature detection
#ifdef __x86_64__
#include <immintrin.h> // For AVX2/AVX-512 intrinsics
#include <cpuid.h>     // For CPUID detection
#elif defined(__aarch64__)
#include <sys/auxv.h>
#include <asm/hwcap.h>
#include <arm_neon.h>  // For NEON fallback if needed
#include <arm_sve.h>   // For SVE
#endif

// For SIMD JSON parsing
#include "simdjson.h"
using namespace simdjson;

// For HTTP server (cpp-httplib, header-only)
#define CPPHTTPLIB_OPENSSL_SUPPORT
#include "httplib.h"

// --- Common Constants ---
const int OPERATION_INTERPOLATE = 0;
const int OPERATION_DIFFERENTIATE = 1;
const int OPERATION_CALCULATE_GRADIENT_1D = 2;
const int OPERATION_HYPERBOLIC_INTERCEPT_HANDLER = 3;
const int OPERATION_INTEGRATE = 4;
const int OPERATION_INTEGRATE_ND = 5;
const int OPERATION_WORKFLOW = 6;

// --- Helper Functions ---
double calculate_arcsecant(double val) {
    if (std::abs(val) < 1.0) {
        return NAN;
    }
    return std::acos(1.0 / val);
}

// Runtime detection functions
bool has_avx2_support() {
#ifdef __x86_64__
    unsigned int eax, ebx, ecx, edx;
    __cpuid(1, eax, ebx, ecx, edx);
    // Check for AVX (ecx bit 28) and AVX2 (ebx bit 5)
    return (ecx & (1 << 28)) && __cpuid_count(7, 0, eax, ebx, ecx, edx) && (ebx & (1 << 5));
#else
    return false;
#endif
}

bool has_avx512_support() {
#ifdef __x86_64__
    unsigned int eax, ebx, ecx, edx;
    __cpuid_count(7, 0, eax, ebx, ecx, edx);
    // Check for AVX-512F bit
    return (ebx & (1 << 16));
#else
    return false;
#endif
}

bool has_sve_support() {
#ifdef __aarch64__
    long hwcaps = getauxval(AT_HWCAP);
    return (hwcaps & HWCAP_SVE) != 0;
#else
    return false;
#endif
}

// --- Portable Packing/Unpacking with Endian Awareness ---
std::string _pack_data(const std::vector<double>& data) {
    std::string binary_data(data.size() * sizeof(double), '\0');
    const char* src = reinterpret_cast<const char*>(data.data());
    char* dst = &binary_data[0];
    if (std::endian::native == std::endian::big) {
        // If big-endian, swap bytes for little-endian network standard
        for (size_t i = 0; i < data.size(); ++i) {
            uint64_t val;
            std::memcpy(&val, src + i * sizeof(double), sizeof(double));
            val = __builtin_bswap64(val);
            std::memcpy(dst + i * sizeof(double), &val, sizeof(double));
        }
    } else {
        std::memcpy(dst, src, binary_data.size());
    }
    return binary_data;
}

std::vector<double> _unpack_data(const std::string& binary_data) {
    std::vector<double> data(binary_data.size() / sizeof(double));
    const char* src = binary_data.data();
    char* dst = reinterpret_cast<char*>(data.data());
    if (std::endian::native == std::endian::big) {
        // Swap back from little-endian
        for (size_t i = 0; i < data.size(); ++i) {
            uint64_t val;
            std::memcpy(&val, src + i * sizeof(double), sizeof(double));
            val = __builtin_bswap64(val);
            std::memcpy(dst + i * sizeof(double), &val, sizeof(double));
        }
    } else {
        std::memcpy(dst, src, binary_data.size());
    }
    return data;
}

// --- Optimized Eigenvalue Packing with Cross-Arch SIMD ---
std::vector<double> pack_eigenvalue_data(const std::vector<double>& eigenvalues) {
    std::vector<double> packed_data(eigenvalues.size());

    if (has_avx512_support()) {
        std::cout << "Using AVX-512 optimization." << std::endl;
#ifdef __x86_64__
        size_t i = 0;
        const size_t vec_size = 8; // AVX-512: 8 doubles
        __m512d one = _mm512_set1_pd(1.0);
        for (; i + vec_size <= eigenvalues.size(); i += vec_size) {
            __m512d vals = _mm512_loadu_pd(&eigenvalues[i]);
            __m512d abs_vals = _mm512_abs_pd(vals);
            __mmask8 mask_ge_one = _mm512_cmp_pd_mask(abs_vals, one, _CMP_GE_OQ);
            __m512d recip = _mm512_div_pd(one, vals);
            __m512d arcsec = _mm512_acos_pd(recip);
            __m512d result = _mm512_mask_blend_pd(mask_ge_one, arcsec, vals);
            _mm512_storeu_pd(&packed_data[i], result);
        }
        // Scalar remainder
        for (; i < eigenvalues.size(); ++i) {
            double val = eigenvalues[i];
            packed_data[i] = (std::abs(val) >= 1.0) ? calculate_arcsecant(val) : val;
        }
#endif
    } else if (has_avx2_support()) {
        std::cout << "Using AVX2 optimization." << std::endl;
#ifdef __x86_64__
        size_t i = 0;
        const size_t vec_size = 4; // AVX2: 4 doubles
        __m256d one = _mm256_set1_pd(1.0);
        for (; i + vec_size <= eigenvalues.size(); i += vec_size) {
            __m256d vals = _mm256_loadu_pd(&eigenvalues[i]);
            __m256d abs_vals = _mm256_max_pd(vals, _mm256_sub_pd(_mm256_setzero_pd(), vals));
            __m256d mask_ge_one = _mm256_cmp_pd(abs_vals, one, _CMP_GE_OQ);
            __m256d recip = _mm256_div_pd(one, vals);
            __m256d arcsec = _mm256_acos_pd(recip);
            __m256d result = _mm256_blendv_pd(vals, arcsec, mask_ge_one);
            _mm256_storeu_pd(&packed_data[i], result);
        }
        // Scalar remainder
        for (; i < eigenvalues.size(); ++i) {
            double val = eigenvalues[i];
            packed_data[i] = (std::abs(val) >= 1.0) ? calculate_arcsecant(val) : val;
        }
#endif
    } else if (has_sve_support()) {
        std::cout << "Using ARM SVE optimization." << std::endl;
#ifdef __ARM_FEATURE_SVE
        size_t i = 0;
        svfloat64_t one = svdup_f64(1.0);
        for (; i + svcntd() <= eigenvalues.size(); i += svcntd()) {
            svfloat64_t sv_eigenvalues = svld1_f64(svptrue_b64(), &eigenvalues[i]);
            svfloat64_t sv_abs_val = svabs_f64_z(svptrue_b64(), sv_eigenvalues);
            svbool_t p_ge_one = svcmpge_f64(svptrue_b64(), sv_abs_val, one);
            svfloat64_t sv_recip = svdiv_f64_z(svptrue_b64(), one, sv_eigenvalues);
            svfloat64_t sv_arcsec = svacos_f64_z(svptrue_b64(), sv_recip);
            svfloat64_t sv_result = svsel_f64(p_ge_one, sv_arcsec, sv_eigenvalues);
            svst1_f64(svptrue_b64(), &packed_data[i], sv_result);
        }
        // Scalar remainder
        for (; i < eigenvalues.size(); ++i) {
            double val = eigenvalues[i];
            packed_data[i] = (std::abs(val) >= 1.0) ? calculate_arcsecant(val) : val;
        }
#endif
    } else {
        std::cout << "No advanced SIMD detected, using parallel scalar loop." << std::endl;
#pragma omp parallel for
        for (size_t i = 0; i < eigenvalues.size(); ++i) {
            double val = eigenvalues[i];
            packed_data[i] = (std::abs(val) >= 1.0) ? calculate_arcsecant(val) : val;
        }
    }
    return packed_data;
}

// --- Optimized Interpolation with OpenMP Parallelism ---
std::vector<double> hyperbolic_parabolic_interpolation(
    const std::map<std::string, std::vector<double>>& data_dict,
    const std::vector<double>& x_interp) {

    std::vector<std::vector<double>> all_fx_data;
    std::vector<std::vector<double>> all_fy_data;

    for (const auto& pair : data_dict) {
        if (pair.first.find("fx") == 0) {
            all_fx_data.push_back(pair.second);
        } else if (pair.first.find("fy") == 0) {
            all_fy_data.push_back(pair.second);
        }
    }

    if (all_fx_data.size() != all_fy_data.size() || x_interp.empty()) {
        throw std::invalid_argument("Invalid data for interpolation.");
    }

    std::vector<double> all_interp_y;
    all_interp_y.reserve(all_fx_data.size() * x_interp.size());

#pragma omp parallel for
    for (size_t i = 0; i < all_fx_data.size(); ++i) {
        const auto& fx = all_fx_data[i];
        const auto& fy = all_fy_data[i];

        if (fx.size() != fy.size() || fx.size() < 3) {
            throw std::invalid_argument("X and Y data must have equal length and at least three points.");
        }

        std::vector<double> local_interp_y;
        local_interp_y.reserve(x_interp.size());

        for (double x : x_interp) {
            std::vector<std::pair<double, double>> points(fx.size());
            for (size_t j = 0; j < fx.size(); ++j) {
                points[j] = {std::abs(fx[j] - x), fx[j]};
            }
            std::sort(points.begin(), points.end());

            double x1 = points[0].second, x2 = points[1].second, x3 = points[2].second;

            auto find_y = [&](double search_x) {
                for (size_t k = 0; k < fx.size(); ++k) {
                    if (fx[k] == search_x) return fy[k];
                }
                return 0.0;
            };

            double y1 = find_y(x1), y2 = find_y(x2), y3 = find_y(x3);

            double denom1 = (x1 - x2) * (x1 - x3);
            double denom2 = (x2 - x1) * (x2 - x3);
            double denom3 = (x3 - x1) * (x3 - x2);
            if (denom1 == 0 || denom2 == 0 || denom3 == 0) {
                local_interp_y.push_back(0.0); // Avoid div-by-zero
                continue;
            }

            double L1 = ((x - x2) * (x - x3)) / denom1;
            double L2 = ((x - x1) * (x - x3)) / denom2;
            double L3 = ((x - x1) * (x - x2)) / denom3;
            local_interp_y.push_back(L1 * y1 + L2 * y2 + L3 * y3);
        }

#pragma omp critical
        all_interp_y.insert(all_interp_y.end(), local_interp_y.begin(), local_interp_y.end());
    }
    return all_interp_y;
}

// --- Optimized Gradient with Parallel Execution ---
std::vector<double> calculate_gradient_1d(const std::vector<double>& data) {
    if (data.size() < 2) {
        throw std::invalid_argument("Data must have at least two points to calculate a gradient.");
    }
    std::vector<double> gradient(data.size() - 1);
    std::adjacent_difference(std::execution::par, data.begin() + 1, data.end(), gradient.begin());
    return gradient;
}

// --- Eigenvalue Handler with Parallelism ---
std::vector<double> handle_eigenvalue_reference_op(const std::vector<double>& packed_data) {
    double sum = std::accumulate(std::execution::par, packed_data.begin(), packed_data.end(), 0.0);
    double mean_value = sum / packed_data.size();

    std::cout << "Server received 'eigenvalue packed radices' data." << std::endl;
    std::cout << "Calculated mean medium: " << mean_value << std::endl;

    std::vector<double> result(5);
#pragma omp parallel for
    for (int i = 0; i < 5; ++i) {
        result[i] = mean_value * (i + 1);
    }
    return result;
}

// --- Workflow Handler with simdjson ---
std::vector<double> handle_workflow(ondemand::document& workflow_doc) {
    auto data_store = std::make_unique<std::map<std::string, std::vector<double>>>();
    std::vector<double> final_result;

    for (auto& step : workflow_doc.get_array()) {
        std::string_view operation = step["operation_type"];

        std::vector<double> input_data_vec;

        auto input_data = step["input_data"];
        std::string_view input_type = input_data["type"];

        if (input_type == "direct") {
            if (operation == "INTERPOLATE") {
                auto fx_data_list = input_data["fx_data"].get_array();
                auto fy_data_list = input_data["fy_data"].get_array();

                std::map<std::string, std::vector<double>> interpolation_data;
                size_t idx = 0;
                for (auto fx : fx_data_list) {
                    std::vector<double> fx_vec;
                    for (auto val : fx.get_array()) fx_vec.push_back(double(val));
                    interpolation_data["fx" + std::to_string(idx)] = std::move(fx_vec);
                    auto fy = fy_data_list.at(idx).get_array();
                    std::vector<double> fy_vec;
                    for (auto val : fy) fy_vec.push_back(double(val));
                    interpolation_data["fy" + std::to_string(idx)] = std::move(fy_vec);
                    ++idx;
                }
                std::vector<double> x_interp;
                for (auto val : step["parameters"]["x_interp_points"].get_array()) {
                    x_interp.push_back(double(val));
                }
                input_data_vec = hyperbolic_parabolic_interpolation(interpolation_data, x_interp);
            } else {
                throw std::runtime_error("Direct input only for INTERPOLATE.");
            }
        } else if (input_type == "reference") {
            std::string source_id = std::string(input_data["source_id"].get_string());
            auto it = data_store->find(source_id);
            if (it != data_store->end()) {
                input_data_vec = it->second;
            } else {
                throw std::runtime_error("Referenced data not found: " + source_id);
            }
        }

        if (operation == "INTERPOLATE") {
            auto output_id_res = step["output_id"];
            if (output_id_res.error() == SUCCESS) {
                (*data_store)[std::string(output_id_res.get_string())] = input_data_vec;
            } else {
                final_result = input_data_vec;
            }
        } else if (operation == "CALCULATE_GRADIENT_1D") {
            auto result = calculate_gradient_1d(input_data_vec);
            auto output_id_res = step["output_id"];
            if (output_id_res.error() == SUCCESS) {
                (*data_store)[std::string(output_id_res.get_string())] = result;
            } else {
                final_result = result;
            }
        } else {
            throw std::runtime_error("Unsupported operation: " + std::string(operation));
        }
    }
    return final_result;
}

// --- Handle Request with simdjson ---
std::string handle_request(const std::string& request_body) {
    try {
        ondemand::parser parser;
        padded_string padded_req(request_body);
        ondemand::document req_doc = parser.iterate(padded_req);
        int operation = int(req_doc["operation"]);
        if (operation == OPERATION_WORKFLOW) {
            std::string_view payload = req_doc["payload"];
            padded_string padded_payload(payload);
            ondemand::document workflow_doc = parser.iterate(padded_payload);
            auto result = handle_workflow(workflow_doc);
            nlohmann::json response;
            response["status"] = "success";
            response["result"] = result;
            return response.dump();
        }
        return "unsupported operation";
    } catch (const simdjson_error& e) {
        // nlohmann::json is not included, so let's use a simpler string
        return R"({"status": "error", "message": ")" + std::string(e.what()) + R"("})";
    } catch (const std::exception& e) {
        return R"({"status": "error", "message": ")" + std::string(e.what()) + R"("})";
    }
}

// --- Server & Client functions ---
void start_server() {
    using namespace httplib;
    Server svr;

    svr.Post("/workflow", [](const Request& req, Response& res) {
        try {
            std::string response_str = handle_request(req.body);
            res.set_content(response_str, "application/json");
            res.status = 200;
        } catch (const std::exception& e) {
            res.set_content(e.what(), "text/plain");
            res.status = 500;
        }
    });

    svr.Get("/ws", [](const Request& req, Response&) {
        // Placeholder for WebSocket.
        // cpp-httplib has basic WebSocket support, but a full implementation
        // is beyond the scope of this fix.
        return;
    });

    std::cout << "Server listening on 0.0.0.0:8080 with HTTP and WebSocket support." << std::endl;
    svr.listen("0.0.0.0", 8080);
}

void start_client() {
    std::cout << "Client started." << std::endl;
    std::vector<double> eigenvalues = {2.5, 10.0, 100.0, 0.5, -0.75, 500.0, -2.5, -100.0};
    auto packed_data = pack_eigenvalue_data(eigenvalues);

    std::cout << "Original eigenvalues: ";
    for (double val : eigenvalues) std::cout << val << " ";
    std::cout << std::endl;

    std::cout << "Packed data: ";
    for (double val : packed_data) std::cout << val << " ";
    std::cout << std::endl;
}

int main() {
    std::thread server_thread(start_server);
    std::thread client_thread(start_client);

    server_thread.join();
    client_thread.join();

    return 0;
}

// Notes:
// - Compile with: g++ -std=c++20 -fopenmp -o adi_internet3 adi_internet3.c -lsocket -lpthread -ljsoncpp -lcpp-httplib
// - This version is for CPU-only, using OpenMP for parallelism.

//Example:

        // This is a simplified C++ module that will be compiled to WebAssembly.
        // It provides the pack_eigenvalue_data function from the adi_internet3.c file.

<script>
        const wasmModuleCpp = `
            #include <vector>
            #include <cmath>
            #include <emscripten/bind.h>
            
            // This is a simplified version of the function from adi_internet3.c
            // It uses standard C++ functions instead of SIMD intrinsics for WebAssembly portability.
            std::vector<double> pack_eigenvalue_data(const std::vector<double>& eigenvalues) {
                std::vector<double> packed_data(eigenvalues.size());
                for (size_t i = 0; i < eigenvalues.size(); ++i) {
                    double val = eigenvalues[i];
                    if (std::abs(val) >= 1.0) {
                        packed_data[i] = std::acos(1.0 / val);
                    } else {
                        packed_data[i] = val;
                    }
                }
                return packed_data;
            }
            
            // Expose the function to JavaScript via Embind.
            EMSCRIPTEN_BINDINGS(my_module) {
                emscripten::function("packEigenvalueData", &pack_eigenvalue_data);
                emscripten::register_vector<double>("VectorDouble");
            }
        `;

        const outputDiv = document.getElementById('output');
        const runButton = document.getElementById('run-wasm');
        const inputData = document.getElementById('input-data');

        async function createWasmModule() {
            try {
                // Use a dynamic import to load the Emscripten script
                // This simulates the compilation and provides the module as a Blob URL
                const response = await fetch('https://cdn.jsdelivr.net/npm/emscripten-module-wrapper@1.0.0/dist/emscripten-module.js');
                if (!response.ok) {
                    throw new Error('Failed to load Emscripten module wrapper');
                }
                const emscriptenWrapperCode = await response.text();
                
                const blob = new Blob([
                    emscriptenWrapperCode,
                    `
                    (async () => {
                        const Module = {};
                        self.Module = Module;
                        Module.locateFile = (path, prefix) => {
                            if (path.endsWith('.wasm')) {
                                return URL.createObjectURL(new Blob([
                                    new Uint8Array(await (await fetch('data:application/octet-stream;base64,${btoa(wasmModuleCpp)}')).arrayBuffer())
                                ], { type: 'application/octet-stream' }));
                            }
                            return prefix + path;
                        };
                        const { wasm, instance } = await WebAssembly.instantiateStreaming(
                            await fetch('data:application/wasm;base64,${btoa(wasmModuleCpp)}'), { env: {} }
                        );
                        Module.instance = instance;
                        Module.exports = instance.exports;
                        Module.FS = {
                            createLazyFile: (parent, name, url, canRead, canWrite) => {}
                        };
                        Module.noInitialRun = true;
                        Module.onRuntimeInitialized = () => {
                            console.log("Wasm module loaded.");
                        };
                        
                        self.WasmModule = Module;
                    })();
                    `
                ], { type: 'application/javascript' });

                const scriptUrl = URL.createObjectURL(blob);
                const script = document.createElement('script');
                script.src = scriptUrl;
                document.body.appendChild(script);

                await new Promise(resolve => script.onload = resolve);
                return self.WasmModule;

            } catch (error) {
                console.error("Error loading WASM module:", error);
                outputDiv.innerHTML = `<p class="text-red-600">Error: Failed to load WebAssembly module. Check console for details.</p>`;
                return null;
            }
        }

        runButton.addEventListener('click', async () => {
            outputDiv.innerHTML = `<p class="text-gray-500">Processing...</p>`;
            
            if (!window.WasmModule) {
                outputDiv.innerHTML = `<p class="text-red-600">Error: Wasm module not ready. Please try again.</p>`;
                return;
            }

            try {
                const rawInput = inputData.value.split(',').map(s => parseFloat(s.trim())).filter(n => !isNaN(n));
                const wasmVector = new window.WasmModule.VectorDouble();
                rawInput.forEach(val => wasmVector.push_back(val));

                const packedResult = window.WasmModule.packEigenvalueData(wasmVector);
                const result = [];
                for (let i = 0; i < packedResult.size(); i++) {
                    result.push(packedResult.get(i));
                }

                wasmVector.delete();
                packedResult.delete();
                
                const originalString = rawInput.map(n => n.toFixed(2)).join(', ');
                const packedString = result.map(n => n.toFixed(4)).join(', ');

                outputDiv.innerHTML = `
                    <p class="mb-2"><span class="font-semibold">Original Eigenvalues:</span> ${originalString}</p>
                    <p class="mb-2"><span class="font-semibold">Packed Data:</span> ${packedString}</p>
                `;
            } catch (error) {
                console.error("Error executing WebAssembly:", error);
                outputDiv.innerHTML = `<p class="text-red-600">Error: An error occurred during processing. See console for details.</p>`;
            }
        });

        // Initialize the Wasm module when the page loads
        createWasmModule();

</script>  
  

No comments: