Hyperconductor Architecture Utility
ANSI-colored, monospaced schematic illustrating absorber/emitter stacks, control planes, and interfaces for integration and review.
Schematic
┌──────────────────────────────────────────── Hyperconductor Stack ────────────────────────────────────────────┐
│ Spectral Target: VIS–NIR Mode: Dual (Absorb/Emit) Topology: MIM + Patterned CC │
│ │
│ [Control Plane] → PID bias, PWM drive, sensor fusion, watchdog │
│ ┌───────────────────────────┐ │
│ │ MCU/FPGA | I²C/SPI | ADC/DAC | RT Clock │
│ └───────────────────────────┘ │
│ │
│ [Emitter Plane] → Perovskite µLEDs / Blue µLED + QD CC (patterned) │
│ ┌───────────────────────────┐ │
│ │ PeLED | QDs(R/G) on SU8/PMMA | Inkjet/Photolithography │
│ └───────────────────────────┘ │
│ │
│ [Absorber Plane] → MIM metasurface + Black Si + Graphene backplane │
│ ┌───────────────────────────┐ │
│ │ MIM cell | Au–Al₂O₃–Au | Resonator pitch: 300–600 nm │
│ │ Black Si | Nanocone RIE | Reflectance < 1–2% │
│ │ Graphene | CVD multilayer | Photothermal spread │
│ └───────────────────────────┘ │
│ │
│ [Interconnect Plane] → TSVs, microvias, impedance‑controlled traces, shielding │
│ ┌───────────────────────────┐ │
│ │ Power | Buck/Boost | LDO rails | Sense shunts │
│ │ Signal | EMI guards | Ground stitching │
│ └───────────────────────────┘ │
│ │
│ [Thermal Plane] → Vapor chamber, graphite sheet, TIM, heat spread │
│ ┌───────────────────────────┐ │
│ │ Sensors | NTC grid | IR diode | ΔT feedback │
│ └───────────────────────────┘ │
│ │
│ [Interface] → Host API, test pads, UART/USB‑C, debug console │
│ ┌───────────────────────────┐ │
│ │ Protocol | JSON‑LD telemetry | Semantic events │
│ └───────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
Label: Control plane
Label: Emitter plane
Label: Absorber plane
Label: Interconnect
Label: Thermal plane
Label: Interface
Embedding notes
- Drop-in: Paste this file directly into your post template or use an iframe to keep styles scoped.
- Accessibility: The schematic container uses role="img" with a descriptive aria-label.
- Scalability: Font sizes use clamp to adapt from mobile to desktop without breaking alignment.
- Color mapping: Classes simulate ANSI fore/backgrounds; you can map real escape sequences server-side if desired.
Design Commentary
- Spectral Targeting: Choose VIS–NIR or narrowband ranges based on sensing, display, or photothermal goals.
- Material Compatibility: Match deposition methods, thermal expansion, and substrate adhesion across layers.
- Patterning Precision: Use inkjet or photolithography for emitter placement; RIE or CVD for absorber structuring.
- Thermal Management: Integrate graphite sheets, vapor chambers, and feedback sensors for ΔT control.
- Control Logic: Include MCU/FPGA for biasing, telemetry, and watchdog routines.
- Civic Integration: Consider reflectance, ambient modulation, and symbolic resonance in architectural contexts.
- Emitter Materials: Perovskite LEDs offer high EQE and tunable color; QD converters enable spectral shaping.
- Absorber Materials: MIM metasurfaces, black silicon, and graphene provide spectral selectivity and photothermal spread.
Secure Photothermal Signalling Considerations
- Open Telemetry: Absorber layers convert incident light into heat; ΔT sensors publish continuous telemetry to local and remote endpoints for real-time monitoring and analytics.
- Persistent Logging: Thermal events are timestamped, indexed, and stored in centralized logs and data lakes for historical analysis and auditability.
- Semantic Encoding: ΔT signatures are mapped to semantic events and enriched with metadata (device ID, location, confidence) and emitted as JSON‑LD telemetry for downstream consumers.
- Networked Control: Thermal triggers can actuate remote services via APIs, webhooks, or message buses, enabling distributed orchestration, third‑party integrations, and automated workflows.
- Identity and Attribution: Signals are associated with device identifiers and cryptographic keys to enable provenance, access control, and accountability across systems.
- Public Data Integration: Aggregated thermal datasets can be published openly for dashboards, research, or third‑party consumption, supporting transparency and reuse.
- Operational Practices: Implement retention policies, schema versioning, and rate limiting to manage scale, ensure interoperability, and maintain data quality.
- Security Considerations: Even without privacy constraints, secure transport (TLS), authentication, and role‑based access control are recommended to protect integrity and prevent tampering.
No comments:
Post a Comment